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INTRODUCTION  
 
Wikipedia defines AI as “artificial intelligence, the 
intelligence of machines and robots” while Thesaurus.com 
suggests expert systems, machine learning and neural 
networks. The interest in machine learning and neural 
networks is high and the attraction of a successful 
implementation is appealing (Kim and Nakata, 2018, Ganssle, 
2018; Waldeland et al. 2018). An early expert system 
development by Pratt et al. (2001) was applied to building 3D 
seed models for inversion and provides some of the underlying 
concepts used in the current work. Our AI philosophy is to 
combine an expert system approach with our experience 
(human neural net) interpreting geology from magnetic data. 
The expert system can be continually improved, which is 
equivalent to the training philosophy of the neural net, but 
there is a significant difference. We understand the modelling 
concepts built into the expert system whereas, it is very 
difficult to understand how a trained neural net model relates 
to the underlying geology. 
 
The AI system is designed as a productivity tool to speed up 
the process of interactive magnetic depth interpretation 
without the need to perform a geophysical inversion. We have 
combined the inherent high precision of the original line data 
with the spatial information that is present in the gridded total 
magnetic intensity (TMI) data to extract parameters that are 
well suited for input to an AI system. These parameters make 
it possible to locate the anomaly, detect the geological model 
style and estimate the target orientation, depth and magnetic 
properties.  
 
The magnetic tensor provides the foundation for much of the 
decision making that takes place in the AI system. It is 
computed from the TMI grid using FFT transformation along 
with other parameters such as the magnetic field components, 
gradients, tilt and reduction to pole (RTP) (Pratt et al., 2018). 
These two-dimensional (2D) parameters are then resampled 
onto the original flight lines to form the primary dataset for the 
AI system (Figure 1). The line data now has 2D information 
that has the same spatial characteristics as if they were 
measured by an instrument although, not with the resolution of 
a real instrument. 
 
Once the AI system has located the anomaly and suggested a 
model style, it computes the depth, azimuth and magnetic 
properties for the target using a range of conventional depth 
interpretation methods including the tensor, Euler 2D, Euler 
3D, Werner Deconvolution, Peters Length and Tilt Depth. The 
depth methods support different model styles, but together 
provide a useful range of model shapes that include dykes, 
formations, pipes, channels, plutons and boundaries. 

SUMMARY 
 
Eigenvector analysis of the magnetic gradient tensor is 
combined with an artificial intelligence (AI) approach to 
rapid, interactive estimation of depth to magnetic source 
for a variety of geological target shapes. The method uses 
the flight line data for maximum depth resolution and 
grids of the magnetic gradient tensor and other 
parameters for 2D spatial attributes. The magnetic 
gradient tensor and related parameters are computed 
using FFT processing of the original total magnetic 
intensity grid. These data are then used as input to the 
pre-trained AI process for preliminary calculation of 
depth, width and magnetic susceptibility. 
 
The eigenvectors are used to compute the normalised 
source strength (NSS) which peaks over the centre of 
magnetisation of the magnetic target. The tensor is used 
to compute the dimensionality of the target which is then 
used to infer if it is pipe-like or linear. If the target is 
linear or elongate, the eigenvector analysis provides a 
direct method for calculating the azimuth of the target at 
the centre of magnetisation. The azimuth is then used to 
correct the apparent depth, width and susceptibility 
estimates. If the target is pipe-like or an ellipsoid in 
shape, then the eigenvector is used to compute the 
azimuth and dip of the magnetisation vector. The NSS 
results also provide a useful tool for estimating the level 
of interference between adjacent magnetic anomalies, a 
factor that decreases the accuracy of any magnetic depth 
estimate. The AI algorithm uses this information to 
assign a quality estimate to the depth result. 
 
At this point, the AI algorithm has derived a lot of 
information about the target shape, orientation and 
approximate depth. This information is then used to 
constrain some classic depth interpretation techniques 
that include the tensor, Euler 2D, Euler 3D, Peters 
Length, Werner Deconvolution and Tilt methods. The 
numerical complexity of each of these methods is greatly 
simplified because the origin of the target is the centre of 
magnetisation. Each method has strengths and 
weaknesses and the AI algorithm attempts to select the 
best method and most probable geological shape. 
Interpreters can override both the method and target 
shape if they are not satisfied with the AI selection 
because the shape selection has a large influence on the 
depth estimation precision.  
 
Key words: magnetic, tensor, depth, AI, magnetisation 
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Importantly, the suggested model style can be overridden by 
the interpreter who will normally be looking at an image of the 
magnetic data during the interpretation process and make their 
own (neural net) decision about the most appropriate 
geological style. The variability between methods provides 
guidance on uncertainty and also educates the user on the 
impact of geological style (constraint) on the precision of the 
depth estimation.  
 

Figure 1. Schematic concept of the processes associated 
with the AI processing where the primary data is 
converted to processed channels that are required for 
input to the depth methods and soft AI processes. The grid 
data provide the essential 2D information while the line 
data provide the best precision for depth estimation. 
 
The AI system also determines the level of interference 
between overlapping anomalies and provides the user with 
feedback on the quality of the depth estimate. 
 

IMPORTANT TENSOR PROPERTIES 
 
The magnetic tensor has many characteristics that provide 
important parametric information for the AI system. It is 
defined in Equation 1: 
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where, 𝐵56 = 	𝜕𝐵5 𝜕𝑗	⁄ (for	𝑖, 𝑗 = 𝑥, 𝑦, 𝑧) is the gradient of the  
𝑖DE magnetic field component in the 𝑗DE axis direction.  
 
Eigenvector decomposition of the symmetric tensor matrix 
produces a rotated and simplified version of the tensor (𝚲) 
(Pedersen and Rasmussen, 1990; Clark 2012). 
 

𝚲	 = G
𝜆I	0	0
0	𝜆K	0
0	0	𝜆L

M (2)	

 
where	𝜆I > 	𝜆K > 	𝜆L are the eigenvalues of the magnetic 
gradient tensor (Pedersen and Rasmussen, 1990; Clark, 2012). 
The three eigenvalues are found by solving the characteristic 
equation	det	(	 𝐁 −	𝚲	𝐈) = 0 while the three eigenvectors 𝐞X𝟏,	

𝐞X𝟐, 	𝐞[𝟑 are found by solving the linear equation 𝐁	𝐞X𝐢 = 𝜆5𝐞X𝐢 
where	𝜆5 is the eigenvalue corresponding to	𝐞X𝐢. 
 
Pedersen and Rasmussen (1990) derive several parameters 
from the eigenvalues that are important for extracting useful 
geological characteristics from the target anomalies. 
 
The rotational invariants I1 and I2 are defined as: 
 
𝐼I = 𝐵%%	𝐵'' + 𝐵''	𝐵(( + 𝐵%%	𝐵𝑧𝑧 − 𝐵%'K − 𝐵'(K − 𝐵%(K    (3) 
 
𝐼K = 𝐵%%	(𝐵''𝐵(( − 𝐵'(K ) + 𝐵%'	(𝐵'(𝐵%( − 𝐵%'𝐵(() +
					𝐵%(	(𝐵%'𝐵'( − 𝐵%(𝐵'')   (4) 
 
The dimensionality index is defined as: 
 

 𝐼 =	−`(𝐼2/2)
2

(𝐼1/3)
3e  (5)	

 
This parameter is very important because it can tell us if the 
target is pipe-like (~1) or has extended strike (~0). It provides 
the AI system with a numeric value that can separate pipes 
from dykes and a continuum in between. A pluton with an 
elliptic shape could have a 𝐷5 value of around 0.5 to 0.75. This 
one parameter helps provide important information that feeds 
into depth and magnetic susceptibility estimation. The 
dimensionality index does vary with magnetisation direction 
and is more reliable at higher field inclinations. 
 
If the dimensionality is low, then the source also has a strike 
or azimuth direction that can be computed from the tensor 
components (Pedersen and Rasmussen, 1990). 
 	

tan	(2 𝜃j) = 2 k./0l.//m.00nm./1.01o	
(.//p q.11p m./1p q.01p )

  (6) 

 
where, 𝜃j is the strike direction of the longer axis of the 
magnetic source. 
 
Parameters Derived from NSS 
 
We only need to calculate the dimensionality index and strike 
direction at the centre of magnetisation rather than as 
continuous functions. Clark (2012) further developed the 
concept of normalised source strength (NSS, 𝜇) (originally 
developed by Wilson (1985)) as an important parameter that 
could be derived from the magnetic gradient tensor.  
 
𝜇 = √(−𝜆KK − 𝜆I𝜆L)  where, 	𝜆I > 𝜆K > 𝜆L (7) 
 
It has many special characteristics because it is semi-
independent of the source magnetisation direction. The NSS 
parameter peaks over the centre of magnetisation for discrete 
bodies and along the central axis of elongate sources. There is 
no need to perform a reduction to pole which is a great benefit 
at low field inclinations due to the instability of the RTP 
calculation. For wide sources, NSS peaks over the edge and 
for narrower targets, the maximum gradient locations of the 
NSS anomaly profile define the outer limits of the high 
magnetisation zone. If the depth-to-width ratio is less than 1, 
then we cannot resolve the true location of the edge, but we 
can define its maximum possible lateral extent or a 
susceptibility-thickness product. 
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We use Nelson’s formulation (Nelson, 1988) to compute an 
estimate for the apparent magnetic susceptibility. 
 
𝑘 = 0.625	𝑧	𝑇yz	/(𝐵{|}~(sinK 𝐼� + cosK 𝐷�)) (8) 
 
where the total gradient: 
 
𝑇yz = √(𝐵%%K + 𝐵''K + 𝐵((K ) (9) 
 
and 
 
z = target depth below the sensor 
𝐵{|}~ = inducing field strength 
𝐼� = field inclination 
𝐷� = field declination. 
 
A first order detection for remanence is determined by a sign 
reversal of the vertical gradient component 𝐵(( or the first 
invariant 𝐼I	at the centre of magnetisation. 
 
Beike et al. (2012), Clark (2014) and McKenzie (2019) show 
that the inclination 𝜙 of the magnetisation of a compact source 
(including a dipole, sphere, ellipsoid and vertical pipe) can be 
calculated from the tensor measurement over the centre of 
magnetisation using the following formula: 
 
𝜙 =	cosqI(𝜆K/𝜇) − 𝜋/2  (0	 ≤ 𝜙 ≤ 	𝜋) (10) 
 
where 𝜆K is the second eigenvalue and 𝜇 is the normalised 
source strength. 
 
The declination of the magnetisation may be estimated from 
the x and y components of each of the three eigenvectors 
(McKenzie, 2019).  Note that the magnetisation direction 
cannot be determined for extremely elongate magnetic 
sources. 
 

DEPTH INTERPRETATION METHODS 
 
From the magnetic tensor over the centre of magnetisation and 
the NSS profile, we recover many geological attributes for 
each target anomaly: 
• Target style - pipe, elliptic pluton or dyke like 
• Strike direction for elongate targets 
• Centre of magnetisation (origin) 
• Apparent magnetic susceptibility 
• Magnetic reversals 
• Magnetisation inclination, declination 
• Target edges 

 
This information is used to constrain and improve the 
precision of the depth determination. The geophysical 
methods we use include: 
• Tensor 
• Euler 2D 
• Peters Length 
• Werner Deconvolution 
• Tilt Depth 
• Euler 3D 

 
We use the peak of the normalised source strength (NSS) from 
Clark (2014) to define the horizontal location of the centre of 
magnetisation which simplifies the calculations of depth for 
the Euler 2D, Werner and Tilt Depth methods. The strike 
direction of the anomaly (Pedersen and Rasmussen, 1990) is 

used to correct the depth estimates for acute angled flight lines 
for the Tensor, Peters Length, Werner Deconvolution and Tilt 
Depth methods. 
 
The tensor analysis provides a dimensionality index (Equation 
5) which automatically differentiates between pipe-like 
magnetic sources and linear magnetic formations or dykes. 
This allows for different depth correction techniques to be 
applied according to the geology. Some methods such as Euler 
2D analysis are very sensitive to an incorrect choice of the 
geological magnetic source type. Analysis of the NSS profile 
provides some information about the width of the magnetic 
source and the AI system classifies it as thin, intermediate or 
thick according to the body type selection.  
 
Euler 2D Method 
 
The Euler method is based on the original work by Thompson 
(1982) which simplifies as follows by using the normalised 
source strength derived centre of magnetisation, 
 

𝑧z = 	
�	.���
-.� -(⁄ 		.  (11) 

 
where: 
𝐵� is the total field intensity the centre of magnetisation 
𝐵��j is the residual total field anomaly 
𝑧z is the depth 
𝑛 is the structural index 
 
The structural index is normally defined in terms of poles and 
dipoles, but these terms have a physical geological 
equivalence as follows: 
 
𝑛 = 1 is a line of poles (thin sheet or formation) 
𝑛 = 2 is a point pole (narrow vertical pipe) 
𝑛 = 2 can also be a line of dipoles (sill or channel) 
𝑛 = 3 is a point dipole (spheres and ellipsoids) 
 
The dimensionality index (𝐼) provides the AI system with 
some help by using the pipe or sphere models for high 
dimensionality and the sheet for low dimensionality. The 
vertical gradient and anomaly amplitudes are derived directly 
from the pre-processed data. Note also that the vertical 
gradient is a 2D gradient derived from the grid processing 
rather than a 1D gradient derived from the line data. 
  
Peters Length Method 
 
Peters Length (Peters, 1949) is a robust analysis method that 
produces a depth estimate for almost any anomaly shape. 
Peters Length is defined as the distance between two half-
slope points where the slope is defined by the maximum 
gradient of the anomaly. The half-slope points are easily 
computed from the horizontal gradient. A correction factor is 
used to convert the Peters Length distance to depth. The factor 
is dependent on the geological shape in a similar way to the 
Euler 2D method. The AI system has calibrated the factors by 
using a range of standard models. 
 
Werner Deconvolution Method 
 
The Werner Deconvolution method was published by Werner 
(1953) and is used for determining the depth to a magnetic 
sheet or edge. We have simplified the method to include one 
sheet and a linear regional because our method is designed to 
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interpret individual anomalies through user selection. The 
equation can be simplified to; 
 
𝐵� = ��(�m��	(%q%�	)

(%q%�	)m(�	
+ (𝑐I + 𝑐K	𝑥)  (12) 

 
where, 
 
𝐵� is the total field as a function of x, 
x is the location of the data point, 
𝑥z is the location of the centre of the sheet or edge, 
𝑧z is the depth to the sheet or edge, 
𝑎I, 𝑏I are body geometry constants, 
𝑐I, 𝑐K are first order regional coefficients. 
 
We know the location of the centre of magnetisation (𝑥z) from 
the NSS peak position. This equation is computed for multiple 
x locations and the matrix of equations is solved for the source 
parameters using singular value decomposition. 
 
Tilt Depth Method 
 
Salem et al. (2007) defined the tilt angle of the magnetic field 
as: 
 
𝑇𝑖𝑙𝑡 = 𝑡𝑎𝑛qI	((𝛿𝐵� 𝛿𝑧)⁄ 	/	(𝜕𝐵� 𝜕ℎ)⁄ )	 (13) 
 
where; 
 
𝜕𝐵� 𝜕ℎ⁄ = ((𝜕𝐵� 𝜕𝑥⁄ )K + (𝜕𝐵� 𝜕𝑦⁄ )K)I/K 
 
The depth is derived directly from the tilt angle using the 
formula: 
 
𝑇𝑖𝑙𝑡 = 	 𝑡𝑎𝑛qI(ℎ 𝑧)⁄  (14) 
 
where ℎ is half the distance between the +45 degree tilt and -
45 degree tilt angles on either side of the wide body edge. The 
method does not require the location of the contact, but it can 
be derived from the NSS peak or zero Tilt location. 
 
Euler 3D Method 
 
We use the tensor method for calculation of the Euler 3D 
solution (Schmidt et al., 2004) which uses both the tensor and 
magnetic field components to solve for the 3D structural index 
(𝑛) and depth. The basic formulation is shown in their 
equation (23) as follows, 
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where the tensor appears on the left-hand side and the field 
components on the right. The map location for the centre of 
magnetisation (𝑥z	, 𝑦z) is known from the peak location of the 
normalised source strength (NSS) and the equation is solved 
for 𝑧z at five critical points along the profile.  
 
The field components are calculated by Fourier transformation 
of the total magnetic intensity grid and assume that the local 
regional has been removed. This method is very sensitive to an 
incorrect regional estimation which feeds through to errors in 
the three field components. The structural index 𝑛 is initiated 

from the tensor analysis but the interpreter can override the 
choice made by the AI system. 
 

AI SYSTEM 
 
By combining the precision of the flight line data with the 2D 
information inherent in the gridded magnetic data we provide 
the essential inputs to the AI process. The tensor analysis 
provides the primary input to the AI system and the auxiliary 
channels such as the magnetic field components, gradients, tilt 
and reduction to pole (RTP) provide the additional input 
required by the various geophysical methods (Euler, Werner 
etc.). From these inputs, the AI system can compute depth, 
azimuth, magnetic susceptibility, depth quality and remanence 
indicators (Figure 2b). 
 
The AI system is focused on using the primary data inputs 
from the tensor analysis to present a model interpretation 
based on what it sees as the most probable geological style 
(dyke, pipe etc.). This model is matched with each of the 
depth calculation methods unless it is incompatible. For 
example, the Tilt method is not appropriate for any model 
other than an edge. By using the various depth analysis 
methods, the following model styles can be used to compute 
depths: 
• Sheet - thin, medium, thick 
• Pipe – thin, medium thick 
• Sphere/ellipsoid 
• Channel 
• Edge 

 

 
Figure 2. An anomaly is selected in a flight line cross-
section a and the results presented in a summary table b. 
The interpreter can override the Azimuth, model type and 
method where appropriate. This training set was applied 
to model data where the sheet model was at a depth of 100 
m. 
 
An interpreter starts by selecting the anomalous section of data 
to be interpreted (Figure 2a) and the AI system presents a 

a 

b 
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summary of the interpretation results along with its choice of 
model and method (Figure 2b). 
 
In the future, we hope to be able to train the AI system to 
Correctly identify ellipsoids and channels. This will require 
improvements to the 3D Euler method which returns an 
optimum structural index, but requires further work on 
separation of the 2D regional magnetic field. 
 
We know from our experience interpreting magnetic survey 
data with forward modelling and inversion that model 
constraints are fundamental to obtaining the best possible 
results within the equivalence limitations of the magnetic 
method. Depth variations for some methods can vary by over 
200% if the incorrect model style is used to interpret an 
anomaly. Our AI approach to selection of the most appropriate 
model style does not lessen the responsibility of the 
interpreter. It is a tool to help speed up the procedure where 
the user can decide to override the automated model selection. 
Some anomalies are too noisy or dominated by interference 
and the AI system will prevent a depth calculation in this 
context. Complex anomalies are better suited to full modelling 
and constrained inversion. 
 
Most of the depth information in a magnetic anomaly is 
associated with the steep gradient sections on either side of the 
anomaly between the major changes in curvature near the 
anomaly peak and trough. The AI algorithm gathers 
information that is closely associated with this segment of the 
anomaly.  
 
Instead of using the original total field intensity anomaly, we 
use the NSS trace because it enhances the depth sensitive 
section of the anomaly. The NSS trace also has the benefit of 
being semi-independent of the IGRF inclination with depths 
from both sides of the anomaly producing similar results. 
 

MODEL TESTS 
 

The AI system is trained on many calculated models and 
tuning parameters are used to create a suite of tables and rules. 
Classic neural net training methods build a neural net model to 
define the relationship between input data and the desired 
output information. This process does not require 
programming to build the underlying model and that is part of 
the attraction of the technique. In our case the AI model is 
built into the software to reflect the rules and calibrations 
developed during the research project. We see a future role for 
neural net techniques to improve some of the inputs to the 
expert system. 
 
Figure 3 (last page) shows the results of a synthetic data set 
test used during the training process with the depth results 
plotted in cross-sections. The symbols are plotted over the 
original models for validation. Each model is set to a depth of 
100 m and in the case of the ellipsoid, this is the centre. The 
three different sheets thickness models have depth errors 
ranging from 6 to 14%, while the pipe models vary from 0 to 
36%. The largest error (136 m depth) is associated with the 
thick pipe and this is caused by applying the thin pipe 
parameters across all three classes. Additional training of the 
AI system is required to achieve improved results. The error 
for the ellipsoid model is just 1%. The channel depth appears 
to be overestimated, but it is only possible to detect the 
channel centre at 125 m which puts the depth error at 1%. 
 
Limitations 

 
This AI approach pushes non-inversion methods to another 
level, especially with the controls over the choice of model 
style. However, there are limitations that must be considered.  
 
The depth-to-width ratio is the depth to the top of the target 
divided by the width of the target. At one limit it is a thin sheet 
like a narrow dyke and at the other extreme it is the edge of a 
wide body. We use the AI system to partition the range into 
the categories, thin, medium, thick and edge which improves 
the precision of the depth estimation. 
 
Interference between adjacent magnetic rock units distorts the 
curvature and gradients between them and invariably 
underestimates the depth to the top. The AI system can 
recognise this interference in the normalised source strength 
profile and downgrades the quality of the depth estimation 
result according to the proportion of overlap. 
 
The regional magnetic field has a minor impact on the tensor, 
Peters Length and Werner Deconvolution methods, but it can 
be severe for the Euler 2D, Euler 3D and Tilt methods. 
 

CASE HISTORY 
 

We have selected a dataset from the Mt Isa Province that has 
been flown at a line spacing of 200 metres (Figure 4). A subset 
of the survey data was selected on the edge of the Mt Isa 
Province where the unconformity surface dips to the east 
below the Carpentaria Basin sediments. The original flight line 
data and grids are available from the Geoscience Australia 
GADDS download facility. 
 

 
Figure 4. Locality map of the depth interpretation study 
over the eastern edge of the Mt Isa Province. 
 
A subset of representative flight lines was chosen for the depth 
study and the results are presented in Figure 5. The left-hand 
map shows symbols superimposed on a monochrome TMI 
image where the symbols are oriented according to the strike 
direction determined from the tensor analysis. The black, 50 m 
depth contours show the shape of the basin sediments. The 
contours were generated by gridding the interpreted depth 
solutions. The right-hand map shows the annotated depths 
superimposed on a colour image of the total magnetic 
intensity. 
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Figure 5 also shows a selection of cross-section profiles with 
depth solution symbols in the lower track. The middle track 
shows the TMI (black) and upper track the normalised source 
strength (NSS) in blue. The depth sections show the basement 
shallowing to the west where it eventually outcrops. Individual 
symbols are colour-coded by the depth calculation method but, 
it is also useful to use other parameters such as depth quality, 
susceptibility or model type. 
 

CONCLUSIONS 
 

The integration of original, high resolution, 1D flight line data 
with the additional 2D spatial information derived from the 
total magnetic intensity grid provides a new method for the 
recovery of depth and magnetic property information. FFT 
processing of the TMI grid produces the magnetic tensor, 
magnetic components, TMI derivatives and RTP grids. The 
resampling of grids onto the 1D flight lines adds the essential 
2D spatial information that provides the foundation for the AI 
system approach to interpreting the data. 
 
The precision of depth estimation is strongly dependent on the 
correct choice of an appropriate geological model. The AI 
system is used to assist the interpreter by differentiating 
between pipes, plutons and elongate geological styles. The AI 
system uses the magnetic tensor to determine the strike 
direction, horizontal centre of magnetisation, a depth value, 
width and magnetic reversal indicator based on the 
interpreter’s final choice of model style. With this starting 
point, other depth methods are evaluated to provide the 
interpreter with a spread of results and the opportunity to 
select the most robust solution. 
 
The 3D Euler deconvolution method has proved to be very 
sensitive to the local regional in complex environments, and 
more research is required to extract the structural index (SI). A 
reliable SI value is an important parameter that will 
complement the dimensionality index and improve geological 
model style selection in the AI system.  
 
The automated building of a model based on the AI system 
provides an excellent seed model for inversion. While the AI 
system results may not be as precise as those provided by full 
inversion, they do provide a rapid and practical method for 
evaluating the depth of cover over large survey areas. 
Inversion can be used on occasional solutions to QC the 
interpreter’s results. 
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Figure 3. A training dataset with all model types and two bodies per line with all models at a depth of 100 m below the sensor. 
The original models are shown in a series of sections with the AI interpreted results plotted on the models. Different shaped 
symbols are used in the map view to represent the different model types with depth annotations alongside. 
 
 

 
Figure 5. Illustration of the application of the AI depth mapping approach to the eastern margin of the Mt Isa Province 
where it disappears beneath the Carpentaria Basin to the east. The left-hand map shows azimuth-oriented symbols where 
depth estimates were obtained and superimposed on an image of the TMI. The contours of basement depths derived from a 
grid of the depth solutions. The right-hand map shows the actual depth values superimposed on a colour image of the TMI. A 
selection of cross-sections shows the depth solutions with graphs of the TMI (black) and normalised source strength (blue). 
 
 


